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Abstract—Identifying the best tuples in a large database for
users has been a longstanding challenge in database community.
Many interactive methods have been proposed to help users
search for their best tuples in the database. Specifically, each
user undergoes rounds of interaction. In each round, the user
is presented with two tuples and is asked to pick the one s/he
prefers more. Based on the user feedback, the user preference can
be learned implicitly. Eventually, the best tuple w.r.t. the learned
user preference is returned. Many systems have been designed
for conducting interactive methods. However, they mainly restrict
their settings on databases with numerical attributes, neglecting
that in reality, databases can also be described by categorical at-
tributes. Although there are some strategies to convert categorical
attributes to numerical attributes, the conversion not only incurs
poor efficiency, but also requires heavy interactive effort. In light
of this, we developed an interactive system, called MixedSearch,
and demonstrated that the system could find the best tuples for
users in the database described by mixed attributes.

Index Terms—mixed attributes; user interaction; data analytics

I. INTRODUCTION

Nowadays, a database typically contains millions of tuples.
Each tuple is described by multiple attributes, including nu-
merical attributes and/or categorical attributes. The numerical
attributes come with fixed orders on their attribute values, e.g.,
attribute “Price” (a lower price is better). In contrast, the cat-
egorical attributes lack fixed orders. Different users can have
diverse preferences on attribute values. For instance, attribute
“Transmission type” (some people might favor automatic cars,
while others may prefer manual cars). To assist users in finding
tuples that align their preferences, various interactive methods
have been proposed. These methods can be applied in many
domains, e.g., car purchase, house buying, and trip planning.

Take the car purchase scenario for illustration. Suppose
that a user Alice wants to buy a car. Following the existing
studies [1]–[5], Alice’s preference could be represented by a
utility function. This function captures Alice’s trade-off among
different attributes and attribute values. For example, Alice
may be willing to pay more to buy an SUV rather than a sports
car. Based on the utility function, each tuple is associated with
a utility (i.e., a function value), and the tuple with the highest
utility is regarded as the best tuple w.r.t. Alice’s preference.

Since the users’ trade-offs are usually implicit in the users’
minds and cannot be explicitly provided, the main idea of
the interactive methods is to learn the users’ utility functions
by interacting with users. The interaction involves multiple
interactive rounds. In each round, users are presented with two

tuples and are asked to indicate which one they prefer more.
By accumulating the users’ feedback, the interactive methods
can implicitly learn the users’ utility functions. When there is
enough information, they suggest the tuples from the database
that have the highest utilities w.r.t. the learned utility functions.

Based on these interactive methods, many existing systems
[2], [6], [7] were designed. They could interact with users for
a few rounds to identify their best tuples. However, these exist-
ing systems have limitations in use, since they mainly restrict
their settings on numerical attributes. When a tuple is also
described by categorical attributes, they have to convert each
categorical value to a new numerical attribute by one-hot en-
coding. For example, if the cardinality (i.e., the number of pos-
sible values) of a categorical attribute “Country” is 100, there
will be 100 additional numerical attributes created, which may
incur poor efficiency and a huge number of interactive rounds.

Motivated by the need of managing both numerical and
categorical attributes (i.e., mixed attributes), we study problem
Interactive Search with Mixed Attributes (ISM). The aim is to
interactively find the user’s best tuple from the database that is
described by numerical and categorical attributes. We develop
a novel system called MIXEDSEARCH, which is powered by
our methods in [1] and has the following attractive features.
Firstly, it efficiently supports a special case of ISM where each
tuple is described by categorical attributes only. Secondly, it
supports the general case of ISM where each tuple is described
both numerical and categorical attributes. Finally, it provides
user-friendly interfaces for users (1) to interact with the sys-
tem, (2) to visualize how attributes affect each other, and (3) to
check how tuples are pruned based on the learned preference.

In this paper, we demonstrate how to use MIXEDSEARCH
to help users search for their best tuples in the database with
mixed attributes. Our major contributions are summarized:

• We develop a system, MIXEDSEARCH, for solving ISM,
i.e., interactive search on databases with mixed attributes.

• MIXEDSEARCH supports both the special and general
cases of ISM, via efficient and effective search methods.

• The system provides several interfaces and supports
novel functionalities, e.g, it shows how different attributes
interact with each other based on the user feedback.

• We deploy the system on two databases (a used car and a
NBA databases) with mixed attributes for demonstration.

In the following, we first introduce our system architecture
in Section II and then demonstrate it in Section III. Finally,
Section IV concludes this paper with possible future work.



II. SYSTEM ARCHITECTURE

The input to problem ISM is a set D of n tuples. Each tuple
p = (pcat[1], pcat[2], ..., pcat[dcat], pnum[1], ..., pnum[dnum])
is described by d mixed attributes, including dcat categorical
and dnum numerical attributes (d = dcat+dnum). Let pnum =
(pnum[1], ..., pnum[dnum]) and pcat = (pcat[1], ..., pcat[dcat]).

Following [2], [6], [7], we model the user preference as a
linear utility function, denoted by f . It is defined as follows.

f(p) =
∑dcat

i=1 ucat[i]h(pcat[i]) +
∑dnum

j=1 unum[j]pnum[j]

• Function h : pcat[i] → R+ maps each categorical value
to a real number, indicating to what extent a user favors
a categorical value, where a larger number is preferred.

• Element ucat[i] (resp. unum[j]) measures the importance
of the i-th categorical (resp. the j-th numerical) attribute
to the user. For ease of representation, we denote the
elements by two vectors: the categorical utility vector
ucat = (ucat[1], ..., ucat[dcat]) and the numerical utility
vector unum = (unum[1], ..., unum[dnum]).

• Function value f(p), called the utility of p w.r.t. f ,
represents how much a user favors tuple p. The tuple with
the highest utility is regarded as the user’s best tuple.

We assume w.l.o.g. the following: (a)
∑dnum

j=1 unum[j] =
1 and call the domain of unum the numerical utility space
and (b) each numerical attribute is normalized to (0, 1] and a
larger value is more favored. Moreover, we use a function gi to
denote the product of ucat[i] and h(pcat[i]). Specifically, gi :
pcat[i] → R+ is defined to be: gi(pcat[i]) = ucat[i]h(pcat[i])
for i ∈ [1, dcat]. In this way, we focus on learning gi(pcat[i])
as a whole, instead of ucat[i] and h(pcat[i]) seperately.

A. Architecture Overview

Our interactive system, MIXEDSEARCH, is designed for
the ISM problem. It employs two methods: SP-Tree and GE-
Graph. The SP-Tree method works for the special case of ISM,
and the GE-Graph method is proposed for the general case of
ISM. Both methods follow the same interaction architecture
[2], [6], [8]. Specifically, they interact with a user for rounds
until they can find the user’s best tuple. Each round consists
of three components. (1) Tuple selection. Based on the user’s
previous answers, the methods select two tuples and ask the
user to pick the one s/he prefers. For example, a user might be
presented with two cars: (a) an SUV with a price $2000 and
(b) a sports car with a price $5000. (2) Information mainte-
nance. According to the user’s choice, the methods update the
information maintained for learning the user’s preference. (3)
Stopping condition. The methods check whether the stopping
condition is satisfied. If so, they terminate the interaction
process and return the result. Otherwise, they start a new
interactive round. In the following, we show how methods SP-
Tree and GE-Graph address each component discussed above.
For lack of space, more technical details are available in [1].

B. ISM with Categorical Attributes Only

The SP-Tree method works on the databases described
by categorical attributes only. It maintains tuples in a tree

structure, called categorical value tree, or C-Tree in short.
During each interactive round, two tuples are selected from the
C-Tree and presented to a user (tuple selection). Based on the
user’s answer, the method updates the C-Tree by pruning the
tuples that cannot be the best tuple (information maintenance).
When there is only one tuple left in the C-Tree, the method
returns that tuple as the answer (stopping condition).

The C-Tree has dcat + 2 levels and satisfies the following
properties. (1) The root is in the 0-th level. (2) Each node in
the i-th level stores a categorical value in the i-th categorical
attribute, where i ∈ [1, dcat]. (3) Each tuple in the database
is recorded in a leaf (i.e., the node in the (dcat + 1)-th level).
There is only one simple path from the root to the leaf, and
the categorical values of the tuple are stored in the path in
order. Figure 1 shows an example of the C-Tree that is built
upon tuples p1, p2, p3, p4 in Table I, where dcat = 2.

Suppose that a user prefers p1 to p3. Intuitively, this means
that the user prefers value B1 than value B2 in the second
attribute, since p1 and p3 have the same value in the first
attribute. Given this information, p3 cannot be the best tuple,
and thus, can be pruned from the C-Tree. Moreover, other
tuples that cannot be the best tuple can be identified by
some derivation rules and also pruned from the C-Tree. To
exemplify, p2 and p4 have the same categorical value A2 in the
first attribute, while in the second attribute, the values of p2 and
p4 are B1 and B2, respectively. Since value B1 is preferred by
the user, p4 cannot be the best tuple and thus, it is also pruned
from the C-Tree. The updated C-Tree is shown in Figure 2.

C. ISM with Mixed Attributes

The GE-Graph method considers the general case of ISM
in which tuples are described by categorical and numerical
attributes. It maintains the following data structures.

(1) A numerical utility range R ⊆ Rdnum , that maintains
the learned user preference on numerical attributes. Recall
that

∑dnum

i=1 unum = 1. The user’s numerical utility vector
unum can be seen as a point in space Rdnum . We maintain a
polyhedron R in Rdnum , called numerical utility range, which
contains unum. Initially, R is the entire numerical utility space,
i.e., R = {r ∈ Rdnum

+ |
∑dnum

i=1 r[i] = 1}. During the interac-
tion, R will be gradually shrunk based on the user feedback.

(2) A relational graph G, which maintains the learned user
preference on categorical attributes. For each tuple pair p, q ∈
D that have different values in at least one categorical attribute,
we build a node v in G, containing (a) the set CV1 of categor-
ical values in p but not in q, (b) the set CV2 of categorical val-
ues in q but not in p, (c) several upper bounds (ub) and lower
bounds (lb), where each upper (resp. lower) bound quantifies
the maximum (resp. minimum) utility difference between the
categorical values of p and q, i.e., it describes to what extent
the users prefer CV1 to CV2. For example, given a pair of
tuples p1 and p2 in Table I, we build a node v1 in Figure 3,
where CV1 = {A1} and CV2 = {A2}. The node v1 also
stores the upper/lower bounds (i.e., lb and ub) on the utility
difference between the categorical values of p1 and p2, i.e.,



TABLE I: Database

p pcat[1] pcat[2]
p1 A1 B1

p2 A2 B1

p3 A1 B2

p4 A2 B2
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g1(A1)−g1(A2). Note that multiple tuple pairs may share the
same node in G if their CV1 and CV2 are the same. Moreover,
each upper/lower bound is a scalar value computed based on
the numerical utility vector unum. Since unum is uncertain in
R, multiple upper bounds and lower bounds might be main-
tained in each node in G. Two nodes in G may be connected
by an edge if the bounds they maintained can be used to derive
more bounds on other nodes based on some derivation rules.

Here, we use two distinct data structures to handle numerical
and categorical attributes, respectively, since these two types
of attributes possess different characteristics (fixed orders vs.
varied orders). Moreover, we maintain a tuple set C comprising
tuples in D which are the candidates of the final answer.
In each round, we select two tuples p and q from C (tuple
selection). According to the feedback, we update R and G by
considering two cases (information maintenance):
(a) If p and q are the same in all categorical attributes, we can

construct a hyper-plane [1] based on the value difference
among the numerical attributes of p and q. This hyper-
plane will be used to shrink R to a smaller range.

(b) If p and q differ in at least one categorical attribute, we
update the node v ∈ G built for tuple pair p and q with
new bounds based on the user preference between p and
q. It may further trigger the update of other nodes in G.

Note that the updates on R and G interact with each other,
i.e., the update on one may lead to the update on the other.
Based on the updated R and G, we adopt several pruning
strategies to prune from C the tuples that cannot be the best
tuple. When there is only one tuple left in C, we stop the
interaction and return the finally left tuple (stopping condition).

III. SYSTEM DEMONSTRATION

We develop an interactive system called MIXEDSERACH,
which is built upon the techniques proposed. In the following,
we demonstrate its functionality using a used car database as
an example (our system also supports other databases, e.g., a
NBA database) [1]. Each car in the database is described by
seven attributes. The first three are categorical attributes (type,
power, and transmission) with no fixed orders on their values.
The last four are numerical attributes (price, year of manufac-
ture, horsepower, used kilometers). In general, a lower price
and fewer used kilometers are preferable, while a more recent
manufacture date and a higher horsepower are preferable.

Our system, MIXEDSERACH, can assist users in finding the
best car in the database by interacting with them. Specifically,
there are three interfaces as shown in Figure 4. (1) Setup
Interface. It allows users to initialize the system setting (e.g.,
which car attributes should be considered). (2) Categorical

Attributes Only Interface. It interacts with users if they only
care about categorical attributes. (3) Mixed Attributes Inter-
face. It interacts with users if they care about categorical and
numerical attributes. Interested readers can find our source
code and online system in [9], and demonstration video in [10].

A. Setup Interface

Figure 4(a) displays the setup interface. Similar to existing
systems [2], [6], [7], it serves as the starting point of MIXED-
SEARCH. The interface comprises four steps. Firstly, users are
prompted to choose an interactive method. Method SP-Tree
supports categorical attributes only, while method GE-Graph
accommodates both numerical and categorical attributes. Note
that if a user intends to consider numerical attributes alone,
they can opt for any of the existing systems, which are beyond
our focus. In the second step, users select the categorical
attributes to be considered. The third step allows users to
specify the numerical attributes to be considered, together with
the acceptable value range on each attribute. For example, a
user may pick attribute “Price” and set its acceptable range
from 1000 USD to 50000 USD. Finally, in the fourth step,
users define the maximum number of candidate cars to be
selected. If users do not have any requirements regarding
attributes or the number of cars, they can stick to the default
setting and click the “Next” button to proceed.

B. Categorical Attributes Only Interface

This interface employs method SP-Tree, which specifically
caters to categorical attributes, to interact with users. It is struc-
tured into three parts. To illustrate, consider a scenario where
a user expresses his/her interest in two specific categorical
attributes, namely power and transmission. Figure 4(b) depicts
the interface for this particular use case.

(1) Interaction. In this part, MIXEDSEARCH interacts with
users for rounds. In each round, it displays two cars to users
and asks them to pick the one they favor more. For example,
Figure 4 (b) shows the case after a user is asked one question,
which shows the user two cars: Car 1 (Power: Diesel, Trans-
mission: Auto) and Car 2 (Power: Diesel, Transmission: Man-
ual). The user may click the “Choose” button on Car 2, indi-
cating that s/he prefers Car 2 to Car 1. Based on the user feed-
back, another two cars are shown and the user is asked to pro-
vide an answer again, until the stopping condition is satisfied.

(2) Visualization. We plot the C-Tree to visualize the process
of SP-Tree. Initially, each car in the database is recorded in
a leaf. Every time a user answers a question, i.e., specifies
his/her preference between a pair of cars, some branches of the
C-Tree are pruned and thus, the number of leaves is reduced.
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Fig. 4: Main Interfaces of MixedSerach

When there is only one leaf in the C-Tree, the car recorded
in the leaf is the best car and it will be returned to the user.

(3) Statistics. We record the statistics of each round so that
users can visualize how we progress based on their feedback.
Specifically, we plot a histogram “Candidate Tuples – Ques-
tions”. It shows the number of cars left in the C-Tree after each
interactive round. Besides, we display two tables that show the
cars in the C-Tree and pruned from the C-Tree, respectively.

MIXEDSEARCH terminates, by summarizing the best car it
identifies, the total number of rounds and the overall statistics.
As shown in Figures 4(c), in our given example, it only
interacts with the user for four rounds to identify the best car.

C. Mixed Attributes Interface

This interface employs method GE-Graph, which supports
both categorical and numerical attributes, to interact with users
(see Figure 4(d)-(e)). It also consists of three parts.

(1) Interaction. Consistent with the second interface, users will
be interacted for multiple rounds. In each round, users are
asked to compare two cars based on their preference.

(2) Visualization. To visualize the process of GE-Graph, we
show the numerical utility range and the relational graph.
(a) A 3D visualization of the numerical utility range R. It is

a polyhedron indicating the possible domain of the user’s
numerical utility vector learned from the user feedback.

(b) A relational graph G that maintains the learned user pref-
erence on categorical attributes. Recall that each node in
G may maintain multiple upper/lower bounds, quantifying
the range of utility difference among categorical values
when the numerical utility vector unum is not fixed. For
the ease of visualization, we suggest a specific unum

and show the tightest bounds on the utility difference
associated with each node in G. The user can click the
button “Randomly Generate” to generate another unum

(which must be in the current R) to see the difference. For
example, as shown in Figure 4(d), after a user answers a
few questions, we can learn the utility difference between
two values “Cng” and “Diesel” in attribute “Power” based
on a specific numerical utility vector unum.

(3) Statistics. In addition to the number of cars left, we also
show how the numerical utility range R is gradually shrunk,
via another histogram “Diameter – Questions”, where the

diameter of R is the maximum Euclidean distance between
two points in R. For example, after interacting with a user for
3 rounds, the diameter of R is reduced by half. We also display
two tables to show the cars pruned and left, respectively.

When there is only one tuple left, we stop the interaction.
The result interface is similar to Figure 4(c) (omitted).

IV. CONCLUSION

In this paper, we study problem ISM, which aims to find
the best tuple for a user, via interactive search, in a database
where each tuple can be described by both numerical attributes
and categorical attributes. We develop an easy-to-use system,
MIXEDSEARCH, which supports both the special case of ISM
and the general case of ISM. Users are allowed to interact
with the system. We provide clear visualization to demonstrate
how the user preference is learned and how the best tuple
is identified. We deploy the MIXEDSEARCH system on two
databases, justifying our usefulness and effectiveness.

As for future work, we plan to enhance the system by
integrating more methods and supporting custom databases.
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